
LECTURE 4 Logic Design



LOGIC DESIGN

The language of the machine is binary – that is, sequences of 1’s and 0’s. But why? 

• At the hardware level, computers are streams of signals. These signals only have two 
states of interest, high voltage and low voltage. 

• Binary is merely a natural abstraction for the underlying signals. 
• Rather than talking about voltage levels, we talk about logically true signals (having a value 1) and 

logically false signals (having a value 0). 
•We might also say that logically true signals are asserted, while logically false signals are de-asserted. 



LOGIC BLOCKS

Logic Blocks are programmable logic components which take some input and produce 
some output according to a set of logical rules. 

• Combinational Logic Blocks – depend only on a set of inputs. Any given input will 
always result in the same output. 

• Sequential Logic Blocks – maintain an internal state, which may affect the output 
obtained for a given set of input values. 



TRUTH TABLES

Defining a combinational logic block is as simple as defining the output values for all 
of the possible sets of input values. 

Because our input takes only one of two values – 0 or 1 – for 𝑛 inputs, there are 2#
possible input combinations. 

As long as we can define the output for each of these combinations, our 
combinational logic block is fully defined.  



TRUTH TABLES

• Consider a logic function with three inputs, A, B, and C, and three outputs, D, E, and F. 
• D is true if at least one input is true, 
• E is true if exactly two inputs are true, and 
• F is true only if all three inputs are true. 

• The truth table will contain 2$ = 8 entries.



TRUTH TABLES

A B C D E F

0 0 0 0 0 0

1 0 0 1 0 0

0 1 0 1 0 0

0 0 1 1 0 0

1 1 0 1 1 0

1 0 1 1 1 0

0 1 1 1 1 0

1 1 1 1 0 1

Inputs Outputs



BOOLEAN ALGEBRA

We can also express logic functions using Boolean algebra. 

• In Boolean algebra, all variables can either have the value 0 or 1. 

• We also have the following operations available: 
• OR : 𝐴 + 𝐵. The result is 1 if either of the variables is 1. Also known as a logical sum. 
• AND : 𝐴 * 𝐵. The result is 1 if both of the variables are 1. Also known as a logical product. 
• NOT : �̅�. The result is 1 only if the value of the variable is 0. 



BOOLEAN ALGEBRA

The following laws and identities may be helpful in manipulating logic equations: 

• Identity laws:  𝐴 + 0	 = 𝐴		and  𝐴 · 1 = 	𝐴.

• Zero and One laws: 𝐴 + 1	 = 1	 and  𝐴 · 0	 = 	0. 

• Inverse laws: 𝐴 + �̅� = 1	 and  𝐴 · �̅� 		= 0.

• Commutative laws: 𝐴 + 𝐵	 = 𝐵 + 𝐴	and 𝐴 · 𝐵	 = 𝐵 · 𝐴. 

• Associative laws: 𝐴 + (𝐵 + 𝐶) 	= 	 (𝐴 + 𝐵) + 𝐶 and 𝐴 * 𝐵 * 𝐶 = (𝐴 * 𝐵) * 𝐶.

• Distributive laws: 𝐴 * 𝐵 + 𝐶 = 𝐴 * 𝐵 + 𝐴 * 𝐶 and 𝐴 + 𝐵 * 𝐶 = 𝐴 + 𝐵 *
𝐴 + 𝐶 .



DEMORGAN’S LAWS

Additionally, we have the transformation rules: 

• 𝐴 * 𝐵 ↔	 �̅� +	𝐵5	

• 𝐴 + 𝐵 	↔ 	 �̅� * 𝐵5



LOGIC EQUATIONS

Consider a logic function with three inputs, A, B, and C, and three outputs, D, E, and F.
• D is true if at least one input is true, 
• E is true if exactly two inputs are true, and 
• F is true only if all three inputs are true. 

Write the logic equations for D, E, and F. 



LOGIC EQUATIONS

Consider a logic function with three inputs, A, B, and C, and three outputs, D, E, and F.
• D is true if at least one input is true, 
• E is true if exactly two inputs are true, and 
• F is true only if all three inputs are true. 

Write the logic equations for D, E, and F. 

• 𝐷	 = 	𝐴	 + 	𝐵	 + 	𝐶

• 𝐸 = (𝐴 * 𝐵 + 𝐵 * 𝐶 + (𝐶 * 𝐴)) * (𝐴 * 𝐵 * 𝐶)

• 𝐹	 = 	𝐴 * 𝐵 * 𝐶



LOGIC GATES

Logic blocks are built from logic gates which implement basic logic functionality.

𝐶 = 	𝐴 * 𝐵

𝐶 = 	𝐴 + 𝐵

𝐶 = 	 �̅�

AND 

OR

NOT

A

B
C

A

B
C

A

Here our AND and OR gates 
accept two input values, but since
AND and OR are both 
commutative and associative, they 
can have any number of input 
values. 

C



LOGIC GATES

Note that it is common to avoid explicit NOT gates in favor of bubbles around the 
input output lines. For example, 

can also be represented as

A

B

A

B

C

C

What logic equation does this 
gate sequence represent?



LOGIC GATES

Note that it is common to avoid explicit NOT gates in favor of bubbles around the 
input output lines. For example, 

can also be represented as

A

B

A

B

C

C

What logic equation does this 
gate sequence represent?

𝐶 = 	 �̅� + 𝐵



LOGIC GATES

•Any logical function can be represented using only the AND, OR, and NOT gates. 

•All logical functions can also be constructed with only a single gate type, as long as 
the gate is an inverting gate with multiple inputs. 
• Two common gates that fit these criteria are NOR and NAND. They are known as universal gates.
• NOR implements the logical function 𝐶 = 	𝐴 + 𝐵
• NAND implements the logical function 𝐶 = 	𝐴 * 𝐵
•Why this is the case?



DECODERS

A decoder is a logic block with 𝑛 input bits and 2# output bits. Only one output bit is 
set, or asserted, for each combination of input bits. 

A decoder essentially translates the input signal into a 
signal that corresponds to the binary value of the n-bit 
input. 

For example, let’s say the input signal is 011 for a 
decoder accepting 3 bits. This corresponds to the decimal 
value 3. So, the output signal becomes 00001000. The 
output signal has 2$ = 8 bits and all are zeroed out 
except for the bit at index 3 (where index 0 is the 
rightmost bit). 



DECODERS

Here is the truth table for the example decoder depicted in the previous slide. 

In0 In1 In2 Out7 Out6 Out5 Out4 Out3 Out2 Out1 Out0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0



MULTIPLEXORS

Multiplexors, or selectors, are logic functions whose output value is one of its input 
values, determined by a selector value.  

The multiplexor on the left has two input values, A and B. There is 
an additional input value S, the selector (or control) value. The 
selector value determines which of the input values, A or B, will be 
used as the output value. 



MULTIPLEXORS

As stated before, all logic functions can be implemented using only AND, OR, and 
NOT. Below is the gate implementation of our example multiplexor. 

A

B

S

C

𝐶 = (𝐴 * 𝑆̅) + (𝐵 * 𝑆)



MULTIPLEXORS

Clearly, with only two data inputs, our selector can uniquely identify the selected 
input value using only a single selector input. We can select A if S is false (0) and B if 
S is true (1). But what if we want more than two data inputs?

To uniquely identify each of 𝑛 data input values, we’ll need log= 𝑛 	selector input 
values.  

It’s easy to convince ourselves of this. Using 𝑛 bits, we can represent the decimal 
range 0 through (2#−1).  Therefore, log= 𝑛 bits can be used to represent the range 
0 through (2?@AB #−1), or 0 through (𝑛 − 1).



MULTIPLEXORS

So, to implement a multiplexor with 𝑛 data inputs and log= 𝑛 selector inputs, we can 
implement the following.

• A decoder that generates 𝑛 signals, each indicating a different input value. 

• An array of 𝑛 AND gates, each combining one of the inputs with a signal from the 
decoder. 

• A large OR gate that takes an input all of the outputs of the AND gates. 

A 1-bit decoder



MULTIPLEXORS

As an example, let’s say we want to implement a multiplexor which accepts 4 input 
bits. We will need 2 selector bits. The selector bits can take on the values 00, 01, 10, 
11. Let’s say our selector-bits decoder uses the following truth table. 

S0 S1 Out3 Out2 Out1 Out0

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 0 0 0

We associate Out0 with data input A, Out1 with data 
input B, and so on. So our multiplexor can be 
implemented with the following logic equation:

If the selector bits are 10, the decoder will give us the 
output bits 0100. Only C will be logically multiplied by 
1, zeroing out the other inputs.

𝐴 * 𝑂𝑢𝑡0 + 𝐵 * 𝑂𝑢𝑡1 + 𝐶 * 𝑂𝑢𝑡2 + (𝐷 * 𝑂𝑢𝑡3)



TWO-LEVEL LOGIC

We can implement any logic function using only AND, OR, and NOT gates. We can 
write any logic function in a standard form which has the following features: 

• Every input is either a true or complemented variable (i.e. 𝐴 or �̅�).

• There are only two levels of gates – one being AND and the other being OR. 

• Possibly a negation on the final output. 

This canonical form is known as two-level representation. 



TWO-LEVEL LOGIC

There are two alternative forms of two-level representation. 

• Sum of Products
• A logical sum (OR) is taken over a collection of logical products (AND).
• Example: 𝐴 * 𝐵 * 𝐶̅ + 𝐴 * 𝐶 * 𝐵5 + (𝐵 * 𝐶 * �̅�)

• Product of Sums
• A logical product (AND) is taken over a collection of logical sums (OR). 

• Example: �̅� + 𝐵5 + 𝐶 * �̅� + 𝐶̅ + 𝐵 * (𝐵5 + 𝐶̅ + 𝐴) 



TWO-LEVEL LOGIC

What is the advantage of using this canonical form of two-level representation? 

Take for example the logic equation of E. 

This equation has three levels of logic, resulting in three steps. 
 We must first perform 𝐴 * 𝐵 , 𝐵 * 𝐶 , and (𝐶 * 𝐴). 
 The results of these are logically summed, 
 After which the result is logically multiplied with another Boolean expression.

The canonical form below has only two steps, but performs the same logical function: 

𝐸 = (𝐴 * 𝐵 + 𝐵 * 𝐶 + (𝐶 * 𝐴)) * (𝐴 * 𝐵 * 𝐶)

𝐸 = 	 𝐴 * 𝐵 * 𝐶̅ + 𝐴 * 𝐶 * 𝐵5 + (𝐵 * 𝐶 * �̅�)



TWO-LEVEL LOGIC

It’s a bit harder to see why every logical function can be represented in the canonical 
forms so let’s look at an example. 

Here, we have three input values A, B, and C and 
output value D. Let’s try to construct the sum-of-products
representation of D. 

A B C D

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1



TWO-LEVEL LOGIC

Sum-of-products representation of D: 

A B C D

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

First, we note that there are only four input combinations which 
result in a value of true for D. These combinations are 001, 010, 
100, and 111. We will just refer to them as T1, T2, T4, and T7. 
So, we can at least say the following:

In other words, if have any of those sequences as input, then D 
must be true. 

T1

T2

T4

T7

𝐷 = 𝑇1 + 𝑇2 + 𝑇4 + 𝑇7



TWO-LEVEL LOGIC

Sum-of-products representation of D: 

A B C D

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Now, we can express each of our sequences in terms of the input 
values. Take T1 for example. 

In other words, T1 is only true if A is false and B is false and C is 
true. For the other sequences, we have the following: 

T1

T2

T4

T7

𝑇1 = 	 �̅� * 𝐵5 * 𝐶

𝑇2 = �̅� * 𝐵 * 𝐶̅

𝑇4 = 𝐴 * 𝐵5 * 𝐶̅

𝑇7 = 𝐴 * 𝐵 * 𝐶



TWO-LEVEL LOGIC

Sum-of-products representation of D: 

A B C D

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Finally, we can replace our T terms to get the following equation 
for D: 

This is our canonical sum-of-products representation of D. 

T1

T2

T4

T7

𝐷 = (�̅� * 𝐵5 * 𝐶) + (�̅� * 𝐵 * 𝐶̅) + (𝐴 * 𝐵5 * 𝐶̅) + (𝐴 * 𝐵 * 𝐶)



PROGRAMMABLE LOGIC ARRAYS

The sum-of-products representation is implemented by the programmable logic array 
(PLA). A PLA is composed of:

• A set of inputs and corresponding input complements.

• An array of AND gates that implement the first level of logic and form a set of 
product terms, or minterms. 

• An array of OR gates, each of which forms a logical sum of any number of minterms.

Note that the contents of a PLA are fixed when the PLA is constructed but an 
equivalent structure called a PAL can be programmed electronically.  



PROGRAMMABLE LOGIC ARRAYS

A PLA can directly implement the truth table
of a set of logic functions with multiple inputs 
and outputs. Let’s look at an example using 
the truth table from earlier. 

A B C D E F

0 0 0 0 0 0

1 0 0 1 0 0

0 1 0 1 0 0

0 0 1 1 0 0

1 1 0 1 1 0

1 0 1 1 1 0

0 1 1 1 1 0

1 1 1 1 0 1

A, B, and C are input values. D, E, and F are output values.



PROGRAMMABLE LOGIC ARRAYS

To construct the PLA, we can perform a 
process similar to constructing the sum-of-
products representation of a logical 
equation. 

First we note that there are only seven 
sequences which result in a truth value for 
any of the output values D, E, or F. 

A B C D E F

0 0 0 0 0 0

1 0 0 1 0 0

0 1 0 1 0 0

0 0 1 1 0 0

1 1 0 1 1 0

1 0 1 1 1 0

0 1 1 1 1 0

1 1 1 1 0 1

T1

T2

T3

T4

T5

T6

T7



PROGRAMMABLE LOGIC ARRAYS

The logic functions for D, E, and F can be 
expressed in terms of these sequences. A B C D E F

0 0 0 0 0 0

1 0 0 1 0 0

0 1 0 1 0 0

0 0 1 1 0 0

1 1 0 1 1 0

1 0 1 1 1 0

0 1 1 1 1 0

1 1 1 1 0 1

T1

T2

T3

T4

T5

T6

T7

𝐷 = 𝑇1 + 𝑇2 + 𝑇3 + 𝑇4 + 𝑇5 + 𝑇6 + 𝑇7

𝐸 = 𝑇4 + 𝑇5 + 𝑇6

𝐹 = 𝑇7



PROGRAMMABLE LOGIC ARRAYS

The logic functions for D, E, and F can be 
expressed in terms of these sequences. 

And each sequence can be expressed in terms of 
A, B, and C. For example, 

A B C D E F

0 0 0 0 0 0

1 0 0 1 0 0

0 1 0 1 0 0

0 0 1 1 0 0

1 1 0 1 1 0

1 0 1 1 1 0

0 1 1 1 1 0

1 1 1 1 0 1

T1

T2

T3

T4

T5

T6

T7

𝐷 = 𝑇1 + 𝑇2 + 𝑇3 + 𝑇4 + 𝑇5 + 𝑇6 + 𝑇7

𝐸 = 𝑇4 + 𝑇5 + 𝑇6

𝐹 = 𝑇7

𝑇1 = 𝐴 * 𝐵5 * 𝐶̅



PROGRAMMABLE LOGIC ARRAYS

So, our products (or minterms) are: 

And our sums of products are:

A B C D E F

0 0 0 0 0 0

1 0 0 1 0 0

0 1 0 1 0 0

0 0 1 1 0 0

1 1 0 1 1 0

1 0 1 1 1 0

0 1 1 1 1 0

1 1 1 1 0 1

T1

T2

T3

T4

T5

T6

T7
𝐷 = 𝑇1 + 𝑇2 + 𝑇3 + 𝑇4 + 𝑇5 + 𝑇6 + 𝑇7
𝐸 = 𝑇4 + 𝑇5 + 𝑇6
𝐹 = 𝑇7

𝑇1 = 𝐴 * 𝐵5 * 𝐶̅
𝑇2 = �̅� * 𝐵 * 𝐶̅
𝑇3 = �̅� * 𝐵5 * 𝐶
𝑇4 = 𝐴 * 𝐵 * 𝐶̅
𝑇5 = 𝐴 * 𝐵5 * 𝐶
𝑇6 = �̅� * 𝐵 * 𝐶
𝑇7 = 𝐴 * 𝐵 * 𝐶



PROGRAMMABLE LOGIC ARRAYS

So, our products (or minterms) are: 

And our sums of products are:

𝐷 = 𝑇1 + 𝑇2 + 𝑇3 + 𝑇4 + 𝑇5 + 𝑇6 + 𝑇7
𝐸 = 𝑇4 + 𝑇5 + 𝑇6
𝐹 = 𝑇7

𝑇1 = 𝐴 * 𝐵5 * 𝐶̅
𝑇2 = �̅� * 𝐵 * 𝐶̅
𝑇3 = �̅� * 𝐵5 * 𝐶
𝑇4 = 𝐴 * 𝐵 * 𝐶̅
𝑇5 = 𝐴 * 𝐵5 * 𝐶
𝑇6 = �̅� * 𝐵 * 𝐶
𝑇7 = 𝐴 * 𝐵 * 𝐶



ARITHMETIC LOGIC UNIT

The Arithmetic Logic Unit (ALU) is the central component of the computing process – it 
performs all of the arithmetic and logical operations. 

We can construct an ALU using only the AND, OR, NOT, and multiplexor logic blocks. 

Since the MIPS word is 32 bits, our ALU needs to handle 32 bit inputs but we can 
start by creating a 1 bit ALU and then extend our ALU for 32 bits.



ARITHMETIC LOGIC UNIT

We start with implementing an ALU that performs AND and OR operations. Our input 
values are a and b. Our circuit performs 𝑎 * 𝑏 and 𝑎 + 𝑏. The actual result is selected 
using a multiplexor where the selector value 0 indicates an AND operation and the 
selector value 1 indicates an OR operation. 

If a has the value 1 and b has the value 0, 
then a selector value of 1 will cause the 
result to be 1 while a selector value of 0
will cause the result to be 0.



ARITHMETIC LOGIC UNIT

Now we need to add addition to our ALU. We will represent the adder as a black 
box which hides the implementation details of addition except to say that our adder 
must accept two inputs for the operands and have one output for the result. 

We must additionally include a CarryIn
input and a CarryOut output. Why do we 
need these? Consider the example below. 

1  0  1  0
+         1  1



ARITHMETIC LOGIC UNIT

Now we need to add addition to our ALU. We will represent the adder as a black 
box which hides the implementation details of addition except to say that our adder 
must accept two inputs for the operands and have one output for the result. 

We must additionally include a CarryIn
input and a CarryOut output. Why do we 
need these? Consider the example below. 

1  0  1  0
+         1  1

1



ARITHMETIC LOGIC UNIT

Now we need to add addition to our ALU. We will represent the adder as a black 
box which hides the implementation details of addition except to say that our adder 
must accept two inputs for the operands and have one output for the result. 

We must additionally include a CarryIn
input and a CarryOut output. Why do we 
need these? Consider the example below. 

1
1  0  1  0

+         1  1
0  1

Carry!

Note that our adder here only
works with single bit operands, so
we must be able to pass the carry
around when necessary.



ARITHMETIC LOGIC UNIT

Now we need to add addition to our ALU. We will represent the adder as a black 
box which hides the implementation details of addition except to say that our adder 
must accept two inputs for the operands and have one output for the result. 

We must additionally include a CarryIn
input and a CarryOut output. Why do we 
need these? Consider the example below. 

1
1  0  1  0

+         1  1
1  1  0  1



ARITHMETIC LOGIC UNIT

Given the input bits a, b, and CarryIn, we can actually construct a truth table for the 
bits CarryOut and Sum. 

a b CarryIn CarryOut Sum

0 0 0 0 0

0 0 1 0 1

1 0 0 0 1

1 0 1 1 0

0 1 0 0 1

0 1 1 1 0

1 1 0 1 0

1 1 1 1 1

Using our procedure for constructing sum-of-product 
canonical forms, we can easily determine that 
CarryOut is given by the following logical equation:

𝐶𝑎𝑟𝑟𝑦𝑂𝑢𝑡 = 𝑎 * 𝐶𝑎𝑟𝑟𝑦𝐼𝑛 + 𝑏 * 𝐶𝑎𝑟𝑟𝑦𝐼𝑛 + (𝑎 * 𝑏)

Question: Why can we leave out the last minterm?



ARITHMETIC LOGIC UNIT

Alright, so we have an equation for the CarryOut. Therefore, our adder at least has 
the following hardware: 

𝐶𝑎𝑟𝑟𝑦𝑂𝑢𝑡 = 𝑎 * 𝐶𝑎𝑟𝑟𝑦𝐼𝑛 + 𝑏 * 𝐶𝑎𝑟𝑟𝑦𝐼𝑛 + (𝑎 * 𝑏)

Note that the summation is left out of this diagram. If we look
back at our truth table, we can obtain the following equation 
for the sum (try it out!). Try to design the hardware to implement
this logic equation for Sum.

𝑆𝑢𝑚 = 𝑎5 * 𝑏5 * 𝐶𝑎𝑟𝑟𝑦𝐼𝑛 + 𝑎 * 𝑏5 * 𝐶𝑎𝑟𝑟𝑦𝐼𝑛 + 𝑎5 * 𝑏 * 𝐶𝑎𝑟𝑟𝑦𝐼𝑛 + (𝑎 * 𝑏 * 𝐶𝑎𝑟𝑟𝑦𝐼𝑛)



ARITHMETIC LOGIC UNIT

Once we’ve implemented the CarryOut and 
Sum logic functions, then we can combine our 
adder (shown here as a black box again) with 
the logical operations to create a simple 1-bit 
ALU. 

In reality, ALUs tend to have more features –
these are simply added as another selector 
value to the multiplexor.



ARITHMETIC LOGIC UNIT

Our 1-bit ALU can now perform AND, OR, and addition. To add subtraction to the 
mix, we need only to add the ability to negate the second operand b. 

Recall the rules for negating a two’s complement number:
• Invert each individual bit. 
• Add 1. 

Now, we can subtract by negating 𝑏0, 𝑏1, 𝑏2, … 	𝑏31 and 
setting the first CarryIn value to 1. 



ARITHMETIC LOGIC UNIT

Now we need to add the ability to 
negate a.

The reason for this is so that we can 
implement NOR. DeMorgan’s laws tell us 
that (𝑎 + 𝑏) = 	𝑎5 * 𝑏5.

Now, we almost have a MIPS-compliant 
1-bit ALU.  



ARITHMETIC LOGIC UNIT

We just need to add support for the SLT (set on less 
than) operation (and overflow detection). 

We do this by adding a new input value
called Less, which is just for SLT instructions. We 
also add a new output to the ALU called Set. 

Here’s how it works: 

•Less always has the value 0. 

•If the selector value to the multiplexor is 3, then the 
Result will be 0 for every bit. 

•The only exception is for the first bit, whose Less 
input will take the Set value of the 32nd bit (1 if a-b 
is negative and 0 if a-b is positive).



ARITHMETIC LOGIC UNIT

Now that we’ve implemented a 1-bit ALU, we 
can simply combine 32 1-bit ALUs to create a 
32-bit ALU. Easy!



ARITHMETIC LOGIC UNIT

To hide the implementation details, we can use 
the universal ALU representation instead.



CLOCKS

Recall that sequential logic involves the idea of an internal state which affects the 
output of a logic block. In sequential logic, there is also the notion of a clock, which is 
used to decide when an element that contains a state should be updated.

Clocks are simply a free-running signal with a fixed cycle time (clock period). The 
clock period is divided into two portions: high and low voltage. 



CLOCKS

Edge-triggered clocking refers to the scheme in which all state changes occur on some 
particular clock edge (either rising or falling). 

There are, however, other clocking methodologies that may be implemented.



STATE ELEMENTS

State elements are memory elements with at least two inputs and one output. 

The inputs are the data value to be written to the state element and the clock signal, 
which indicates when the data value should be written. 

The output is the data value that was written on the previous cycle. 

Some state elements are only written when there is an explicit write signal, which can 
only occur on the active clock edge. 



SYNCHRONOUS SYSTEM

A clocked system is also known as a synchronous system.

Below is a diagram representing the relationship between state elements and logic 
blocks in synchronous, sequential logic design. 

Why not just shorten the clock cycle time?

There is a lower bound on the length of the 
clock period, which must be long enough for all 
state input elements to be “valid” before they 
are written. A signal is considered “valid” if it is 
stable.



SYNCHRONOUS SYSTEMS

Edge-triggered methodology allows for state elements to be used as input as well as 
output. The previous diagram can be condensed into the following, which uses only 
one state element for the combinational logic block. 


